
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Exploiting Performance Portability in Search Algorithms
for Autotuning1

Amit Roy, Prasanna Balaprakash, Paul D. Hovland, and Stefan M.
Wild

Mathematics and Computer Science Division

Preprint ANL/MCS-P5397-0915

September 2015

1This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under contract number DE-AC02-
06CH11357.



Exploiting performance portability in search algorithms for
autotuning

Amit Roy∗†, Prasanna Balaprakash†, Paul D. Hovland†, and Stefan M. Wild†
∗School of Computing

University of Utah
Salt Lake City, Utah 84112

aroy@cs.utah.edu

†Mathematics & Computer Science Division
Argonne National Laboratory

Argonne, Illinois 60439
{pbalapra,hovland,wild}@anl.gov

ABSTRACT
Autotuning seeks the best configuration of an application
by orchestrating hardware and software knobs that affect
performance on a given machine. Autotuners adopt various
search techniques to efficiently find the best configuration,
but they often ignore lessons learned on one machine when
tuning for another machine. We demonstrate that a surro-
gate model built from performance results on one machine
can speedup the autotuning search by 1.6X to 130X on a
variety of modern architectures.

General Terms
Performance

1. INTRODUCTION
The ever-increasing complexity of mapping large-scale sci-
entific codes to High-performance computing architectures
presents significant obstacles for scientific productivity. Ap-
plication developers and performance engineers often resort
to manually rewriting the code for the target machine, a
painstaking and time-consuming effort that is neither scal-
able nor portable. Automatic empirical performance tuning
(in short, autotuning) attempts to address the limitations
of such manual tuning. Autotuning consists of identifying
relevant application, hardware, and system-software param-
eters; assigning a range of parameter values using hardware
expertise and application-specific knowledge; and then sys-
tematically exploring this parameter space to find the best-
performing parameter configuration on the target machine.

A given application is typically autotuned from scratch and
independently on each new target machine. This approach is
motivated by the conventional wisdom that the performance
of a code configuration on one machine is not portable to
another machine because the differences in hardware and
system software. Although this is generally true, one has
to wonder whether sets of high-quality parameter configura-
tions will be similar for similar machines, such as consecutive

Figure 1: Run times of LU decomposition kernel
code variants on Intel E5645 and E5-2687W ma-
chines.

generations within a particular vendor’s product line. We
hypothesize that although the best configuration obtained
from one machine might not be the best on another machine,
knowledge on the high- and low-performing parameter con-
figurations from one machine can be exploited to speedup
autotuning on another machine.

For illustration, consider 200 configurations of a LU decom-
position kernel, where each configuration is generated with
a specific loop unroll, cache, and register tiling value. Fig-
ure 1 shows the run times of these configurations on Intel
E5645 (Westmere) and E5-2687W (Sandybridge) machines.
Despite the difference in the actual run times, we observe a
strong correlation (Pearson and Spearman correlation coef-
ficients ρp and ρs greater than 0.8, respectively); the config-
urations with shorter (longer) run times on Westmere and
Sandybridge are similar. Given such a trend, the results on
Westmere can be exploited to speed autotuning on Sandy-
bridge (and vice versa).

In this paper, we develop a systematic way of using perfor-
mance data obtained on one machine to benefit autotuning
on another machine. The main aspects of the proposed ap-



proach are as follows. Given a set of parameter configura-
tions and their corresponding application run times obtained
from a particular machine, we build a surrogate performance
model using a machine-learning approach. We then use this
model to guide the autotuning search on another machine.
We investigate two guiding strategies: a conservative prun-
ing strategy, in which the surrogate performance model is
used to identify and avoid evaluating potentially poor config-
urations, and a greedy biasing strategy, in which the search
is restricted to configurations that the model predicts to
have shorter run times.

This paper makes the following contributions:

• From a methodological perspective, we propose a novel
machine-learning-based approach for using autotuning
results from one machine on another machine;
• From an algorithmic viewpoint, we develop new model-

based random search variants for autotuning;
• From an experimental evaluation and benchmarking

standpoint, we present performance portability exper-
iments on a wide range of modern architectures. In
particular, for the first time, we show the existence
of performance correlations between Intel Sandybridge
and IBM Power 7.

2. PROBLEM AND SETUP
Given an application (or kernel), a set of tunable param-
eters, and a target machine, the goal of autotuning is to
find an optimal configuration with respect to a user-defined
performance metric. Formally, autotuning seeks to solve

min
x
{f(x;α, β, γ) : x ∈ D(α, β, γ) ⊂ Rm} , (1)

where x is a vector of m tuning parameter values, D denotes
the set of allowable configurations, α denotes the given appli-
cation, β is a set of hyperparameters, and γ is the target ma-
chine. The value f(x) is the performance metric, typically
run time, for the parameter configuration x. In the hyperpa-
rameters β, we include parameters such as the input size of
the application, CPU/DRAM frequency, and compiler type
and its corresponding flags; each of these can potentially af-
fect the reported value f(x) but typically remain unchanged
and uncontrolled during autotuning. In general, the space
of allowable configurations depends on the values of α, β,
and γ.

In autotuning work, the best configuration obtained by eval-
uating all configurations in D or is approximated by evalu-
ating configurations in a subset D′ ⊂ D obtained by prun-
ing nonpromising configurations using architecture- and/or
application-specific information [1]. As codes and architec-
tures become more complex, however, such approaches be-
come computationally prohibitive because of the large num-
ber of allowable parameter configurations. Consequently,
a scalable approach to autotuning includes using a search
algorithm to systematically evaluate a tiny subset of config-
urations on the target machine in order to identify the best
(or approximately best) parameter configurations.

Search algorithms that have been deployed for autotuning
include variants of random search, genetic algorithms, sim-
ulated annealing, particle swarm, Nelder-Mead, orthogonal
search, pattern search, and model-based search [29, 16, 32,

15, 4]. These algorithms share a common theme: evaluations
obtained before iteration k are used to determine configu-
ration(s) to evaluate during iteration k. For random search
without replacement (henceforth, “RS”), however, this de-
pendence on the past is limited to avoiding repeated evalu-
ation of any configuration.

In this paper, we use RS to illustrate the effectiveness of
the proposed approach. We select RS due to its simplicity:
parameter configurations are sampled uniformly at random
from the feasible domain D without replacement. At itera-
tion k, each unevaluated configuration x ∈ D has probability

1
|D|−k+1

of being selected for evaluation. The algorithm is

terminated early when a predefined number of evaluations
(or wall clock time limit) has been exceeded; otherwise, it
stops after |D| iterations with the global optimum. For al-
gorithms other than RS, it would be difficult in attributing
observed benefits only to the proposed approach, since the
search uses previous evaluations to decide which configura-
tions to evaluate next. Furthermore, RS has been shown to
be effective on a number of performance-tuning tasks [29,
16].

3. PROPOSED APPROACH
We let A denote a set of architectures and/or compilation
types (to which we refer collectively as a set of “machines”).
Given an application α with a fixed input size, the auto-
tuning problem for machine γa ∈ A is thus to minimize
f(x;α, βa, γa) as a function of x. We make the important
assumption that the set of allowable configurations does not
vary across the set A, that is, D = D(α) = D(α, βa, γa) for
all γa ∈ A.

We take Ta = {(x1, y1), · · · , (xl, yl)}, where xi ∈ D and
yi = f(xi;α, βa, γa) are parameter configurations and the
corresponding run times obtained on the machine γa ∈ A.
Given the same application α to be tuned with the same
input size, our approach consists of using Ta to develop a
surrogate performance model of f(·;α, βb, γb) for some other
machine γb ∈ A and to use this model to accelerate the
search for an optimal x ∈ D on machine γb. When possible,
it may be desirable to keep some hyperparameter settings
the same on γa and γb (e.g., as we do with compiler type in
our experiments). In our formulation, this corresponds to
partitioning β as {β1, β2} so that βb = {β1

a, β
2
b}, where β1

a

denotes the set of hyperparameters kept constant.

To develop the surrogate performance model, we adopt a su-
pervised machine-learning approach that seeks a surrogate
functionM for the expensive f such that the difference be-
tween f(x) and M(x) is minimal for all x ∈ {x1, · · · , xl}
(and, ideally, for all x ∈ D). The function M, which is
called an empirical performance model, can be used to pre-
dict the run times of all x ∈ D (not just those xi for which
f(xi) has been evaluated).

We investigate two ways of using the surrogate model ob-
tained from Ta to accelerate the search on machine γb: a
pruning strategy, where we hypothesize that the poor con-
figurations on machines γa and γb will be highly correlated,
and a biasing strategy, where we hypothesize that the high-
performing configurations on the two machines will be highly
correlated.



Figure 2: Decision tree obtained from matrix-
multiplication kernel data on Intel Sandybridge.
The input parameters are unrolls (U I, U J, U K)
and register tilings (RT I, RT J, RT K) for the loops
i, j, and k.

In the remainder of this section, we describe the supervised-
learning approach for obtaining a surrogate performance
model and how the pruning and biasing strategies are im-
plemented in RS using the surrogate model.

3.1 Surrogate performance model
The choice of the supervised-learning algorithm for build-
ing the surrogate performance model is crucial. Often this
choice should be driven by an exploratory analysis of the
relationship between the parameter configurations and their
corresponding run times. Our previous studies in perfor-
mance modeling and tuning [3, 2], shows that recursive par-
titioning approaches are well suited for the surrogate per-
formance modeling. Here, we employ random forest (RF),
a state-of-the-art recursive partitioning method [7].

Given a set of training points Ta, RF proceeds as follows.
The multidimensional input space D is partitioned into a
number of hyperrectangles using the run times of the param-
eter configurations. On each hyperrectangle, further parti-
tioning takes place recursively until the run times within
the partition are the same or when partitioning does not
improve certain criteria. Typically, partitions are described
by a decision tree with if-else rules as shown in Figure 2.
The paths from the root to each leaf define the set of hyper-
rectangles. The value in each leaf corresponds to the mean
run times of the training configurations that fall within the
associated hyperrectangle. Given an unseen input configura-
tion, the decision tree is used to identify the hyperrectangle
to which this input belongs and returns the corresponding
leaf value as the predicted value. The power of RF comes
from the fact that it uses a collection of decision trees, each
of which is built on a different random subsample of points
from the entire training set Ta. Consequently, RF can model
nonlinear interactions and relationships between the inputs
and their corresponding output.

Algorithm 1 Random search with pruning strategy.

Input: Ta from machine γa, max evaluations nmax, config-
uration pool size N � nmax, cutoff parameter δ

1 Ma ← fit(Ta)
2 Xp ← sample N distinct configurations from D
3 Yp ← predict(Ma, Xp)
4 ∆ ← δ% quantile of Yp

5 Xout, Yout ← {}
6 k ← 1
7 while k ≤ nmax do
8 xk ← sample from D ∩ (Xout)

c

9 if predict(Ma, xk) < ∆ then
10 yk ← Evaluate(xk)
11 Xout ← Xout ∪ xk; Yout ← Yout ∪ yk
12 k ← k + 1

Output: Best parameter configuration from Xout

Algorithm 2 Random search with biasing strategy.

Input: Ta from machine γa, max evaluations nmax, config-
uration pool size N � nmax

1 Ma ← fit(Ta)
2 Xp ← sample N distinct configurations from D
3 Yp ← predict(Ma, Xp)
4 Xout, Yout ← {}
5 k ← 1
6 while k ≤ nmax do
7 xk ← arg minx∈Xp predict(Ma, x)
8 yk ← Evaluate(xk)
9 Xp ← Xp\xk

10 Xout ← Xout ∪ xk; Yout ← Yout ∪ yk
11 k ← k + 1

Output: Best parameter configuration from Xout

3.2 Pruning and biasing strategies in random
search

In the pruning strategy, we use the surrogate performance
model to identify potentially poor configurations and avoid
evaluating them; in the biasing strategy, we restrict the
search to configurations that the model predicts to have bet-
ter run times. The pruning and biasing strategies in RS are
shown in Algorithms 1 and 2, respectively.

Given a maximum number of evaluations nmax as a budget,
data Ta from machine γa, and a cutoff parameter 0 < δ <
100, RS with pruning proceeds in two phases. In the first
phase, the algorithm fits a surrogate performance modelMa

using Ta. It then samples N � nmax configurations at ran-
dom and predicts the corresponding run times Yp. A cutoff
value ∆ is estimated by computing the δ% quantile of Yp.
The iterative phase of the algorithm consists of sampling
an unevaluated configuration at random, predicting its run
time usingMa, and evaluating the configuration on the tar-
get machine(s) only when its predicted run time is smaller
than ∆.

RS with biasing also proceeds in two phases. The only differ-



Table 1: Orio transformations considered.
Transformation Description Range
Loop unrolling data reuse 1, · · · , 31, 32
Cache tiling cache hits 20, · · · , 210, 211

Register tiling cache to register 20, · · · , 24, 25

loads

ence in the first phase is that the algorithm does not require
an estimate of the cutoff. The key difference is in the second
phase: at each iteration an unevaluated configuration with
the smallest predicted run time according toMa is selected
for evaluation on the target machine(s).

4. EXPERIMENTAL SETUP
In this section we describe the experimental setup, test prob-
lems, and machines used for the experiments.

4.1 Orio
In our experiments, we use Orio [15, 25], an extensible and
portable framework for empirical performance tuning. Orio
takes as input an annotated C or Fortran code specifying
potential code transformations (see Table 1 for the transfor-
mations used in our experiments), their possible parameter
values, and a search strategy. The search algorithm in Orio
generates multiple versions of the source code based on the
different code transformations and runs the resulting config-
urations on a target machine in order to find the one with
the best run time. We refer the reader to [15, 25] for details
about the annotation parsing and code-generation schemes
in Orio.

4.2 Machines
Experiments were run on Intel Westmere, Intel Sandybridge,
Intel Xeon Phi, IBM Power 7, and AppliedMicro X-Gene
ARM 64-bit at Argonne’s Joint Laboratory for System Eval-
uation. Table 2 shows the machine specifications used in our
study. As a default, we use the GNU compiler (v4.4.7) with
the -O3 optimization flag, since this is supported on all the
tested architectures. For experiments involving Intel ma-
chines, we also used the Intel compiler (v15.0.1) with -O3
optimization.

4.3 Test kernels
We use problems from the SPAPT test suite [5], which are
implemented in an annotation-based language that can be
readily processed by Orio and are used primarily for testing
the effectiveness of search algorithms. Each search problem
is a particular combination of a kernel, an input size, a set
of tunable decision parameters, a feasible set of possible pa-
rameter values, and a default/initial configuration of these
parameters for use by search algorithms.

Table 3: Collection of test kernels considered.
Kernel ni Search Space Size Input Size
MM 12 8.58e+10 2000×2000
ATAX 13 2.57e+12 10000
COR 12 8.57e+10 2000×2000
LU 9 5.83e+08 2000×2000

SPAPT contains 18 kernels that are grouped into elemen-
tary dense linear algebra kernels, dense linear algebra solver
kernels, stencil code kernels, and elementary statistical com-
puting kernels. We selected the following kernels to cover all
these groups with sufficient complexity and problem size to
capture interaction among all levels of the memory hierar-
chy.

Matrix Multiply (MM) is used in many scientific applica-
tions. It is usually bounded by the compute capability [34],
implying that performance improvements are limited by the
architecture’s speed in executing floating-point operations.

ATAx (ATAX) is a matrix transpose and matrix multiplica-
tion followed by a vector multiplication operation. ATAX is
commonly found in statistical applications and is inherently
bounded by memory bandwidth because of the low floating-
point-operation intensity.

Correlation (COR) measures how two data sets are related.
This is a common operation used in data analysis. This ker-
nel is usually memory bounded because of the low number
of floating-point operations.

LU Decomposition (LU) is a common matrix operation
that factorizes a matrix A into a lower L and an upper U
triangular matrix such that A = LU . It is used to solve
a system of linear equations. This kernel is also usually
memory bound because of the low ratio of floating-point
operations to memory operations.

The number of parameters, search space size, and input size
for each of the four SPAPT problems considered are shown
in Table 3.

4.4 Run setup and metrics
For a given kernel α, we run RS on the machine γa; col-
lect Ta; and run RS, RSp, and RSb on the machine γb. The
controllable factors, such as input size, compiler type, and
compiler flags, are kept unchanged on γa and γb. The max-
imum number of evaluations, nmax, and configuration pool
size, N , are set to 100 and 10, 000, respectively. In RSp, the
cutoff parameter δ is set to 20%.

To assess the effectiveness of the model in the proposed ap-

Table 2: Description of architecture set considered.
Name Processor Cores Clock Speed (GHz) L1 (KB) L2 (KB) L3 (MB) Memory (GB)
Sandybridge Intel E5-2687W 8 3.4 32 256 20 (shared) 64
Westmere Intel E5645 6 2.4 32 256 12 (shared) 48
Xeon Phi Intel Xeon Phi 7120a 61 1.24 32 512 - 16
Power 7 IBM Power7+ 6 4.2 32 256 10 (per core) 128
X-Gene APM883208-X1 8 2.4 32 256 8 (shared) 16



proach, we include in our comparison model-free variants
of RSp and RSb. The model-free variant of RSp (denoted
by RSpf ) computes its value of ∆ from Ta instead of using
any model. Then, it evaluates the configurations on γb in
the same order as on γa but avoids evaluating configurations
according to the bound ∆. The model-free variant of RSb

(denoted by RSbf ) sorts the configurations in Ta in ascend-
ing order with respect to the run times on γa and evaluates
them in the sorted order on γb. Consequently, in both RSpf

and RSbf , the search on γb is restricted to the evaluated
configurations Ta from γa.

For comparison, we compute performance and search time
speedups with respect to RS. As a defining example, sup-
pose that RS takes 100 s to find its best configuration (with
a run time of 5 s) and that RSb takes 80 s to find its best
configuration (with a run time of 3 s), but requires only 50 s
to find a configuration with a run time of 5 s. Then, the per-
formance and search time speedups of RSb over RS are 1.6X
and 2X, respectively. We consider a variant to be successful
on a particular problem when its performance speedup is at
least 1.0X and its search time speedup is greater than 1.0X.

5. RESULTS
First, we focus on results obtained using the GNU compiler
(v4.4.7) with the -O3 optimization flag. Figure 3 shows the
results from two Intel machines, where we use data from
RS on Westemere (γa) to improve search on Sandybridge
(γb). The first column shows the results of the model-based
RS variants, RSp, and RSb. Each plot shows the run times
of the best-found code version and the elapsed search time
for RS and its variants. Table 4 summarizes the observed
speedups in search time and performance.

Model-based and model-free RS variants are bet-
ter than RS: The plots in Figure 3 show a general trend
that the RS variants dominate RS and that RSb outper-
forms RSp primarily with respect to search speedups, which
are between 1.6X and 130X. The performance speedups that
are between 1.0X and 1.3X are not as significant as the
search speedups. The second column shows the results of
the model-free RS variants, RSpf , and RSbf . We observe

that RSbf is significantly better than RSpf and RS (Table 5).
However, there are no performance speedups because RSpf

and RSbf are restricted to the same 100 configurations of
RS.

Biasing is better than pruning: The superior perfor-
mance of biasing (RSb and RSbf ) over pruning (RSp and
RSpf ) strategies can be explained by observing the cor-
relation plots of RS run times obtained on the two ma-
chines, which are shown in the third column of Figure 3.
The plots exhibit a high correlation (Pearson and Spearman
correlation coefficients ρp and ρs greater than 0.8, respec-
tively) across various kernels. We observe that a large frac-
tion of the high-performing code versions remain the same
across Westmere and Sandybridge. Consequently, RSb and
RSbf benefit from this strong correlation by identifying the
promising configurations and evaluating them first. On the
other hand, the conservative pruning strategy does not re-
sult in significant speedups, which can be attributed to the
cutoff parameter δ (= 20%).

Model-based is better than model-free: The advan-
tage of the model-based (RSb) over the model-free (RSbf )
variant is twofold. The adoption of the model enables RSb

to identify promising configurations from a large configura-
tion pool, which results in performance speedups up to 1.3X.
The total search time required by RSb is shorter than that of
RSbf because the former tries to evaluate only code versions
with shorter run times.

We note that the run time correlation between machines is
also affected by the kernel being tested. Different kernels
stress different hardware components that may or may not
be similar across machines. This dependence on the kernel
is evident in the correlation plot of ATAX, where there is a
loss of correlation between poor performing variants. How-
ever, this lack of correlation alone does not affect our RSb

and RSbf variants because the high-performing versions are
strongly correlated.

We also observe that data from Sandybridge can speed the
search on Westmere, yielding search-time and performance

Table 4: Search performance and run time speedup for biased, model-based variant.
Source

Westmere Sandybridge Power 7
Performance Speedup Performance Speedup Performance Speedup

T
a
rg

et

M
M

Westmere - - 1.05 5.33 1.09 9.60
Sandybridge 1.04 28.92 - - 1.19 7.95

Power 7 1.00 1.66 1.00 14.88 - -

A
T
A
X

Westmere - - 1.00 1.85 1.01 14.25
Sandybridge 1.02 29.91 - - 1.03 17.84

Power 7 0.96 0.00 0.98 0.00 - -
X-Gene 0.88 0.00 0.79 0.00 1.11 4.52

L
U

Westmere - - 1.03 129.31 1.03 129.31
Sandybridge 1.04 52.56 - - 1.04 99.90

Power 7 1.32 20.67 1.32 109.82 - -
X-Gene 1.00 1.00 1.00 1.00 1.00 1.00

C
O
R

Westmere - - 1.00 4.94 0.97 0.00
Sandybridge 1.00 1.76 - - 0.90 0.00

Power 7 0.84 0.00 1.00 25.75 - -
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Figure 3: Using Intel Westmere to speed the search on Intel Sandybridge.



Table 5: Search performance and run time speedup for biased, model-free variant.
Source

Westmere Sandybridge Power 7
Performance Speedup Performance Speedup Performance Speedup

T
a
rg

et

M
M

Westmere - - 1.00 117.85 1.00 26.24
Sandybridge 1.00 118.92 - - 1.00 25.57

Power 7 1.00 11.12 1.00 57.62 - -
A
T
A
X

Westmere - - 1.00 45.86 1.00 17.41
Sandybridge 1.00 51.91 - - 1.00 17.84

Power 7 1.00 2.64 1.00 1.90 - -
X-Gene 1.00 17.26 1.00 11.97 1.00 37.43

L
U

Westmere - - 1.00 129.31 1.00 129.31
Sandybridge 1.00 99.90 - - 1.00 99.90

Power 7 1.00 109.82 1.00 109.82 - -
X-Gene 1.00 1.00 1.00 1.00 1.00 1.00

C
O
R

Westmere - - 1.00 52.61 1.00 4.07
Sandybridge 1.00 52.88 - - 1.00 3.93

Power 7 1.00 34.98 1.00 91.67 - -

speedups ranging from 1.7X to 52X and 1X to 1.04X, re-
spectively, for RSb and run time speedups ranging from 75X
to 320X. The role of similarity between architectures will
prove important as we explore more dissimilar pairs of ar-
chitectures.

Sandybridge performance data can be used to speedup
search on Power 7: Figure 4 shows the results on In-
tel Sandybridge and IBM Power 7. Despite the architec-
tural differences, we observe a similar trend: RSb and RSbf

are better than RS, RSp, and RSpf and the effectiveness
of RS variants depends on the tested kernels. RSb obtains
search speedups between 15X and 109X and performance
speedups between 1.0X and 1.3X (see Table 4). Similarly,
RSbf achieves run time speedups between 2X and 109X. The
dissimilarity between the two architectures is evident in the
correlation plots. Despite low ρp and ρs values, the RSb

variant performs well because it requires only that the high-
performing code versions match up across architectures, which
can be seen across ρp and ρs values of the correlation plots.

Approach fails on dissimilar machines: Figure 5 shows
the results on Intel Sandybridge and ARM X-Gene on ATAX.
We were not able to collect data for all the kernels since their
run times or compilation times were too high on the ARM
X-Gene given the same input size as on other architectures.
On the ATAX kernel, we observe that RS variants do not
achieve any significant run time and performance speedups
over RS. Data for LU were collected, but no performance
improvement over the default was seen.

We next focus on tuning on the Xeon Phi with Westmere
and Sandybridge as source machines, where we use the Intel
compiler (v15.0.1) with the -O3 optimization flag. For test-
ing we used the MM LU and COR kernels compiled by Intel’s
compiler with added OpenMP pragmas to take full advan-
tage of the Xeon Phi. We set 8 threads for Sanydbridge and
Westmere, respectively, and 60 threads for the Xeon Phi.

The results are shown in Figure 6 and Table 6. On MM, we did
not get a meaningful trend because out of all the evaluated
code versions, default one without any code transformation

is the best on the Xeon Phi. It seems that the Intel com-
piler is performing all the required transformations and any
additional transformations are detrimental to performance.
The results on LU show that RSb dominates RS and RSp.
It obtains search-time speedups of 850X and performance
speedup of 1.6X. However, on LU, although RSb quickly iden-
tifies promising configurations, it eventually fails to outper-
form RS and RSp in performance speedup. Furthermore,
because of the adoption of the model, the overall search time
of RSb is shorter than that of all other variants. We observe
a similar trend even when Westmere is used as a source.

6. RELATED WORK
Using cross-architecture performance data to improve au-
totuning can be seen as a warm-start approach, a well-
known technique to speedup numerical optimization algo-
rithms (see, e.g., [36]). Any cross-architecture performance-
projection approaches can be deployed within our proposed
framework to speed search algorithms. GROPHECY [19]
is a performance-projection framework that can estimate
the performance of GPU implementations by analyzing their
corresponding CPU code skeletons. Although the CPU to
GPU code transformation is automatic, it relies on user-
supplied code skeletons and analytical models of the tar-
get GPU. SKOPE [20] is an extension of GROPHECY to
any type of architecture for which a user can supply a spe-
cific form of analytical model. PACE [26] is a performance-
projection framework designed to guide and speedup code
design and program scheduling for a targeted architecture.
PACE uses a collection of analytical models for various com-
ponents of an architecture’s hierarchy; these models can also
be deployed within our framework. Other work in perfor-
mance projection, such as [8, 6], can also be used within our
framework.

The adoption of machine learning to improve the autotuning
search has received much attention in recent years. Whether
in an offline or an online setting, the focus in all these works
is to use machine learning to search faster within a single
machine. Examples include [22, 31, 37, 17, 33, 11, 13, 9, 27,
14, 24, 2, 23, 18, 30].
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Figure 4: Intel Sandybridge used to speed the search on IBM Power 7.
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Figure 5: Intel Sandybridge used to speed search on ARM X-Gene.
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Figure 6: Intel Sandybridge used to speed search on Xeon Phi.



Table 6: Search performance and run time speedup for biased, model-based variant for Xeon Phi experiments.
Source

Westmere Sandybridge Xeon Phi
Performance Speedup Performance Speedup Performance Speedup

T
a
rg

et

M
M

Westmere - - 1.00 165.49 0.92 0.00
Sandybridge 1.00 1.00 - - 1.00 1.00

Xeon Phi 1.00 1.00 1.00 1.00 - -
L
U

Westmere - - 1.09 41.45 1.10 168.89
Sandybridge 1.34 514.49 - - 1.17 120.67

Xeon Phi 1.63 850.53 1.61 850.53 - -

C
O
R

Westmere - - 1.29 24.95 1.06 4.12
Sandybridge 1.17 248.02 - - 1.20 5.90

Xeon Phi 1.44 0.52 0.49 0.00 - -

A number of systems support the tuning of optimization pa-
rameters by means of search, but again they are restricted
to single targeted machine. Such systems include Active
Harmony [32] (integrated with the CHiLL loop transforma-
tion framework [10] to generate configurations), POET [35],
Orio [15], Sequoia [28], the X-Language [12], and the ap-
proach in [21].

7. CONCLUSION
We proposed a machine-learning-based approach to use per-
formance data obtained from one machine to speed autotun-
ing on another machine. The key aspect of the proposed ap-
proach consists of building a surrogate performance model
from the performance data from one machine to bias the
autotuning search toward promising parameter configura-
tions on the target machine. The experiments on various
machines and kernels showed that the proposed approach
resulted in significant search time speedups.

Although Sandybridge and Power 7 are from different ven-
dors, the promising configurations are similar. However,
we did not observe such a trend on ARM. Quantification
of the dissimilarity between source and target machines re-
quires further investigation, and the proposed approach will
greatly benefit from empirical methods that can assess the
dissimilarity. Although the observed search time speedups
are significant, the performance speedups are small because
of the adoption of random search. We will test the pro-
posed approach with other sophisticated search algorithms
in order to achieve performance improvements. We will also
investigate whether the proposed approach can be general-
ized for different input sizes, compiler settings, and kernels
or applications.
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